翻訳と辞書
Words near each other
・ Random plot generator
・ Random positioning machine
・ Random projection
・ Random Quest
・ Random Recipe
・ Random regular graph
・ Random Roads Collection
・ Random search
・ Random seed
・ Random self-reducibility
・ Random sequence
・ Random Shoes
・ Random Spirit Lover
・ Random stimulus
・ Random structure function
Random subspace method
・ Random test generator
・ Random testing
・ Random Thoughts
・ Random Thoughts (Don Pullen album)
・ Random Thoughts (Faye Wong album)
・ Random Thoughts (Koolism album)
・ Random tree
・ Random variable
・ Random variate
・ Random vibration
・ Random Violence
・ Random Vol. 3/Sad Clown Bad Dub 7
・ Random walk
・ Random walk closeness centrality


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Random subspace method : ウィキペディア英語版
Random subspace method
Random subspace method (or attribute bagging) is an ensemble classifier that consists of several classifiers each operating in a subspace of the original feature space, and outputs the class based on the outputs of these individual classifiers. Random subspace method has been used for decision trees (random decision forests),〕〔 linear classifiers, support vector machines, nearest neighbours and other types of classifiers. This method is also applicable to one-class classifiers.
The algorithm is an attractive choice for classification problems where the number of features is much larger than the number of training objects, such as fMRI data or gene expression data.
== Algorithm ==
The ensemble classifier is constructed using the following algorithm:
# Let the number of training objects be ''N'' and the number of features in the training data be ''D''.
# Choose ''L'' to be the number of individual classifiers in the ensemble.
# For each individual classifier l, choose ''d (d < D)'' to be the number of input variables for l. It is common to have only one value of d for all the individual classifiers
# For each individual classifier l, create a training set by choosing ''d ''features from D without replacement and train the classifier.
# For classifying a new object, combine the outputs of the ''L'' individual classifiers by majority voting or by combining the posterior probabilities.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Random subspace method」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.